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ABSTRACT
This paper builds on the results of the ESANN 2019 conference
paper “Privacy Preserving Synthetic Health Data” [16], which de-
velops metrics for assessing privacy and utility of synthetic data
and models. The metrics laid out in the initial paper show that util-
ity can still be achieved in synthetic data while maintaining both
privacy of the model and the data being generated. Specifically, we
focused on the success of the Wasserstein GAN method, renamed
HealthGAN, in comparison to other data generating methods.

In this paper, we provide additional novel metrics to quantify the
susceptibility of these generative models to membership inference
attacks [14].We also introduceDiscriminator Testing, a newmethod
of determining whether the different generators overfit on the
training data, potentially resulting in privacy losses.

These privacy issues are of high importance as we prepare a
final workflow for generating synthetic data based on real data
in a secure environment. The results of these tests complement
the initial tests as they show that the Parzen windows method,
while having a low privacy loss in adversarial accuracy metrics,
fails to preserve privacy in the membership inference attack. Only
HealthGAN shows both an optimal value for privacy loss and the
membership inference attack. The discriminator testing adds to the
confidence as HealthGAN retains resemblance to the training data,
without reproducing the training data.
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1 INTRODUCTION
Privacy concerns frequently prevent dissemination of datasets con-
taining sensitive data such as personal health data. In the United
States, laws such as HIPAA prevent sharing of electronic health
records (EHR) to protect the privacy of patients. Synthetic data gen-
eration methods provide an attractive alternative for making data
available for research and education purposes without violating
privacy. This paper focuses on new ways to empirically assess if
a synthetic dataset is truly private while still retaining its utility
(usefulness to solve a given problem) and resemblance (how close
the distribution of synthetic data distribution matches the original
data distribution). “Privacy Preserving Synthetic Health Data” [16]
introduced novel metrics for measuring the quality of the synthetic
data generators, and investigated multiple synthetic data generative
methods with respect to these metrics. These generative methods
were a Wasserstein GAN [1, 6] method being called HealthGAN, a
Gaussian Multivarate[3] method, a Parzen Windows[10] method,
an Additive Noise Model[8], a Differential Privacy preserving data
obfuscation[4, 12] method, and simply “copying the training data”
method. Of these HealthGAN and Additive Noise Model are novel
and the others are taken as baselines to compare against since
several have obvious privacy, utility, and resemblance characteris-
tics. For example, “copying the training data” and over-fit Parzen
Windows have excellent utility and resemblance but unacceptable
privacy, while the Gaussian Multivariate method has high privacy
but poor utility and resemblance. The Differential Privacy method
only protects information for the 7 quasi-identifier columns1 and
leaves other columns as real data therefore having unacceptable
privacy. Additionally model privacy was another characteristic of
the different methods. This evaluates whether the model contains
any of the real data and therefore doesn’t retain privacy. It was de-
termined that only HealthGAN and Gaussian Multivariate methods
preserve model privacy. While not all the methods were viable as a
final method choice due to privacy concerns, the different types of
methods showed different pros and cons to styles of generators.

To test these methods, we developed the concept of nearest neigh-
bor adversarial accuracy and privacy loss. Nearest neighbor adver-
sarial accuracy, shown in Equation 1, compares the distance from
one point in a target distributionT , to the nearest point in a source
distribution S , defined as dTS (i) = minj ∥xiT − xjS ∥, to the dis-
tance to the next nearest point in the target distribution, defined as

1‘Insurance’, ‘Language’, ‘Religion’, ‘Marital-Status’, ‘Ethnicity’, ‘Gender’ and ‘Age’.
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dTT (i) = minj , j,i | |xiT − xjT | |. By comparing this across all points,
it gives us the adversarial accuracy. This metric can be interpreted
much like balanced accuracy where the value is an average of the
accuracy for each class. Therefore we are striving for a value of 0.5
where the synthetic and real data cannot be distinguished. If that
is achieved on both the training and test datasets, then privacy is
said to be preserved.

𝒜𝒜TS =
1
2

(
1
n

n∑
i=1

1 (dTS (i) > dTT (i)) +
1
n

n∑
i=1

1 (dST (i) > dSS (i))

)
(1)

Privacy loss is defined in Equation 2 as the difference between
the adversarial accuracy on the test set and the adversarial accuracy
on the training set. As the ideal value for both of these is 0.5, the
privacy loss should be 0.0 when privacy is completely conserved. In
the case where the model is exposing data, the value of the training
adversarial accuracy will be lower than 0.5, and therefore even if
the test adversarial accuracy is 0.5, the loss will increase.

(Train 𝒜dversarial 𝒜cc .) = E[𝒜𝒜RtrA1 ]

(Test 𝒜dversarial 𝒜cc .) = E[𝒜𝒜RteA2 ]

PrivacyLoss = Test 𝒜𝒜 − Train 𝒜𝒜
(2)

In this paper, the focus is on improving the methods for mea-
suring the quality of the data, both in terms of the privacy and
the utility. The first improvement is by measuring the effect of
membership inference attacks. This is a novel way to measure how
well privacy is maintained across the different methods. Second,
we develop a new measure of how well the synthetic data resem-
bles the original data. Specifically, we exploit the discriminator
that distinguishes between real and synthetic data created in the
training of HealthGAN. We assess how well synthetic points are
predicted to be synthetic points by HealthGAN. These results are
compared with previous privacy loss and utility results on these
same methods.

2 MEMBERSHIP INFERENCE ATTACKS
In a membership inference attack scenario, an attacker attempts
to determine whether a given record was used to train a model
[15]. In this scenario the attacker also has black-box access to the
model, meaning they have the ability to feed data into the model
and observe the output of the model [13, 14]. The original scenario
doesn’t exactly match what would happen with HealthGAN be-
cause the input to HeathGAN generator network is random noise,
rather than real data. Therefore in HealthGAN setting the model
the attacker has access to is just the generator and cannot train the
model, only feed it random noise in order to generate data. There-
fore, instead we show how using the synthetic data generated from
the network and a variant of nearest neighbor accuracy can be used
to assess vulnerability to this kind of attack. Membership inference
attacks are important to prevent because if an attacker can infer
the membership of a patient in a training set for a model then they
can infer other information about the patient. For instance, if the
cohort is all diabetic patients and membership can be inferred then
the attacker knows that the patient is diabetic. Even more impor-
tantly, membership inference attacks lead to additional attacks such

as profiling and property inference[7]. The following attack is an
adapted formulation of the original membership inference attack
specifically for testing a GAN generator.

In the attack scenario we are considering, an attacker has access
to some real data R with incomplete records for each patient. Specif-
ically, we can assume, without loss of generality, that the attacker
has access to columns [c1 . . . ck ], but not to columns [ck+1 . . . cN ].
Simultaneously, the attacker has access to a synthetic (artificial)
dataset A for which all columns [c1 . . . cN ] are given, which al-
lows him/her to create a predictor of columns [ck+1 . . . cN ] from
columns [c1 . . . ck ]. Subsequently, this could allow him/her to pre-
dict the missing columns in real data, which could constitute a
breach of privacy. This violation of privacy can be quantified in the
membership attack scenario context by evaluating the fraction of
real data records that can be identified after completing the missing
data in R.

We place ourselves in the worst case scenario, in which the
attacker has available a large fraction of the columns in R, making
the attack simpler. We consider the limit case in which all the
columns are available, and determine how easy it is to identify
which real data records were used for training our data generative
model. We construct R to be a random shuffle of the training and
non-training data, and attempt to sort out if each point is from
training or not, using a nearest neighbor classifier. We compute
the distance from a sample in R to it’s nearest neighbor in A, then
measure the AUC of prediction { training vs. non-training sample }
using the measured nearest neighbor distance as a ranking measure.
If the AUC is greater than 0.5 (chance level), then the model may be
exposing private data by allowing the attacker to figure out which
records are in training.

This experiment was conducted on the same dataset from Med-
ical Information Mart for Intensive Care (MIMIC)[9] used in the
previous paper. The dataset includes categorical demographic data
such as religion, language, and ICU admission type. It also includes
vital signs from the first 48 hours in the ICU in the form of contin-
uous values, such as heart rate, blood pressure, and temperature.
Finally, there is binary data in the form of diagnosis categories as
defined by the Clinical Classification Software (CCS)[2] codes and
mortality of the patient after 48 hours. The task is to predict if a
patient died or not using the other available features. Note since
HealthGAN requires numeric features, categorical features are con-
verted into values between 0 and 1 using the synthetic data vault
formulation [11]. The results of the experiment for each method
are shown in Figure 1 and Table 1. In addition to the membership
inference results the privacy loss and utility are included from the
previous metrics. The utility is now measured using the area un-
der the curve value when predicting mortality instead of balanced
accuracy on data with the proportion of mortality matching the
original dataset.

The membership inference test results show that the worst meth-
ods are the Training Data and the Additive Noise Model. This makes
intuitive sense because the training data being passed of as syn-
thetic are the most over-fit model that can be created. The Additive
Noise Model is also an over-fitting model and therefore it isn’t
surprising to have low privacy. The next worst is the Differential
Privacy method, which only obscures some of the data and there-
fore also has the same issue as the training data in revealing real
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Figure 1: Results from the membership inference attack.
The top plot shows the ROC curves and AUC values for each
method. The optimal methods are HealthGAN and Gauss-
ian Multivariate, which follow the diagonal and have the an
AUC of 0.5. The Additive Noise Model and Training data fol-
low a right angle to the upper left and show the worst case
scenario with an AUC of 1.0. The bottom plots show the dis-
tribution of distances between the synthetic data and the
real data being tested. For the left plot treating the Training
data as synthetic data, distances between the training and
non training data are easily separable because the distances
to the training data are always zero. In the right plot, dis-
tances for HealthGAN synthetic data distances are all very
similar, and making it hard to distinguish the training data
from the non training data.

data. The Parzen Windows methods actually perform similarly,
whether on the last iteration or the first. The initial window size
was 0.28, and under-fits the training data in general, and by the last
iteration the window is down to 0.00028, where the data overfits
the model. Despite these differences, they still have approximately
the same exposure in a membership inference attack. Finally, the
best methods are HealthGAN and Gaussian Multivariate which
have the optimal result of 0.5. In the membership inference attack
scenario, these two methods don’t reveal any information about
the use of a specific data point in the training set.

Comparing these results to the privacy and utility results of the
last paper, we can see that the membership inference attacks are

Table 1: Results from themembership inference attack com-
pared with privacy loss and utility metrics. Membership in-
ference is measured in area under the curve. A value of 0.5
shows that the ability to distinguish data used for training
from data that wasn’t is no better than random. A value of
1.0 shows that those two classes can be perfectly separated,
and thus the method may be vulnerable to a membership
attack. PW = ParzenWindows, GM = Gaussian Multivariate,
DP = Differential Privacy, ANM = Additive Noise Model.

Method Mem. Inf. Priv. Loss Utility
Train 1.00 0.50 0.88
ANM 1.00 0.50 0.74
DP 0.93 0.47 0.87
PW Over-fit 0.81 0.00 0.87
PW Under-fit 0.82 0.00 0.77
GM 0.50 0.02 0.62
HealthGAN 0.50 0.00 0.66

exposing new privacy concerns with both of the Parzen Windows
methods. In the adversarial accuracy metrics, the privacy loss of
those methods was 0.0 and seemed to indicate that they had good
privacy, but with the results of the membership inference attack we
can see that while the data itself might seem private it is exposing
information in the form of membership inference information.With
the other methods we can see that the membership inference results
confirm the privacy evaluation of the previous metrics. HealthGAN
and Gaussian Multivariate methods both score well on both pri-
vacy metrics. Additionally the Training, Differential Privacy, and
Additive Noise Model methods all score poorly on both metrics as
is expected since these models over-fit.

3 DISCRIMINATOR TESTING
In addition to the nearest-neighbor adversarial accuracy and utility
metrics, there are other ways to measure the quality of the syn-
thetic data. As part of training HealthGAN, there is a discriminator
network and a generator network[5]. The discriminator network
measures the Wasserstein distance[1, 6] from each record in a batch
of data to the modeled distribution of the real data. The farther this
distance is from zero, the more likely the data is to be synthetic.
Therefore, another way to test the quality of the synthetic data,
as well as whether the discriminator itself seems to be function-
ing as expected, is to look at how that discriminator distinguishes
synthetic datasets generated by other methods.

The discriminator network was tested on several generative
methods and datasets and the results are shown in Table 2. The
first dataset is the training data used by the model. The result of
the training data is predictably the closest average distance to zero
of all the methods, as the discriminator is modeled based on that
data. The test data was also tested with the discriminator and had
a mean of -0.065. This mean is also small but far larger than that
of the training data. This indicates that there is a potential that
the discriminator might be over-fitting to the training data. If a
model over-fits the training data this could indicate a lack of pri-
vacy in the generated data. It also shows that a mean distance of
data less than the testing data might indicate over-fitting in the
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generative method. This happens with the over-fit version of the
Parzen Windows method and the Differential Privacy method. The
Parzen Windows method has been trained for too many iterations
and is generating data too similar to the original data. This is differ-
ent from the result of the membership inference attack, where the
under-fit and over-fit models were similar. The difference in the
results shows the importance of using different metrics and com-
paring them. The Differential Privacy method only obscures some
of the features in the original data and therefore still has a smaller
distance to the training data than even the test data has. On the
other end of the spectrum is the under-fit Parzen Windows method,
which has the farthest distance from the real data distribution. This
shows how poorly the data fits the original data. Finally, the last
three methods, Additive Noise Model, Gaussian Multivariate, and
HealthGAN, show distances farther than the test data but close
enough to still retain utility.

Table 2: Results from the discriminator test compared with
the membership inference, privacy loss, and utility metrics.
The discriminator results are measured as mean Wasser-
stein distance away from the modeled training distribution.
PW = Parzen Windows, GM = Gaussian Multivariate, DP =
Differential Privacy, ANM = Additive Noise Model.

Method Disc. Mean Mem. Inf. Priv. Loss Utility
Train -0.013 1.00 0.50 0.88
PW Over-fit -0.013 0.81 0.00 0.87
DP -0.031 0.93 0.47 0.87
ANM -0.107 1.00 0.50 0.74
HealthGAN -0.120 0.50 0.00 0.66
GM -0.136 0.50 0.02 0.62
PW Under-fit -0.266 0.82 0.00 0.77

Combining these results with the membership inference results
from the previous section and the privacy loss and utility results
from the previous paper, we can make conclusions on the overall
privacy and utility of the data. As expected, copying the training
data shows predictable results across the board; it has the worst pri-
vacy values and best utility values. The Differential Privacy method,
which only has slight changes to obscure the quasi-identifiers in the
data, performs similarly to the training data. The Additive Noise
Model isn’t obviously over-fitting in the discriminator mean, but
in the membership inference and privacy loss, we can see that it
has poor privacy retention. The Parzen Windows methods seemed
to preserve privacy and have high utility based on the previous
metrics, but in both the membership inference results and the dis-
criminator testing we can see that they expose information about
the real data. In a membership inference attack, they have a poor
value of AUC and in the discriminator mean we can see the over-fit
model is too close to the training data, closer than the test data,
and the under-fit model is the farthest away of all of the methods.
Finally, HealthGAN and Gaussian Multivariate perform very simi-
larly, but with HealthGAN edging out the Gaussian Multivariate in
the privacy loss, utility, and discriminator mean. For both of these
methods, the privacy values are close to the best possible, and the
utility values, while lower than the methods with poor privacy, are
still showing utility in the mortality task.

4 CONCLUSION
Due to the critical privacy concerns with medical data, it is impor-
tant to ensure that not only does no real data get generated by the
model, but no information about the real dataset is exposed by the
synthetic data. By combining the results from the membership infer-
ence attack experiment with the discriminator testing experiment,
we can see a clearer picture of how our methods balance privacy
and utility. First, we see the simplistic methods fail at the privacy
metrics, while succeeding at resemblance and utility. Second, we
see some of the methods having worse privacy than was clear in
the initial metrics. Finally, we see that two of our methods that
preserve model privacy are validated with the new tests.

These additional metrics validate HealthGAN’s privacy retention,
but still show gaps in the utility of the generated data. In general,
data generated by GANs does not model outliers well, but within the
field of health data that type of data can be very common. Therefore,
an open question is how to improve HealthGAN in order to model
and synthesize outlier and rare data without compromising on high
levels of privacy.

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gan.

arXiv preprint arXiv:1701.07875 (2017).
[2] Healthcare Cost, Utilization Project, et al. 2016. Clinical classifications software

(CCS) for ICD-9-CM. last modified October 7 (2016).
[3] Richard O Duda, Peter E Hart, and David G Stork. 2012. Pattern classification.

John Wiley & Sons.
[4] Cynthia Dwork. 2008. Differential privacy: A survey of results. In International

Conference on Theory and Applications of Models of Computation. Springer, 1–19.
[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[6] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. 2017. Improved training of wasserstein gans. In Advances in
Neural Information Processing Systems. 5767–5777.

[7] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. 2017.
LOGAN: Membership Inference Attacks Against Generative Models. arXiv
preprint arXiv:1705.07663 (2017).

[8] Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard
Schölkopf. 2009. Nonlinear causal discovery with additive noise models. In
Advances in neural information processing systems. 689–696.

[9] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3 (2016), 160035.

[10] Emanuel Parzen. 1962. On estimation of a probability density function and mode.
The annals of mathematical statistics 33, 3 (1962), 1065–1076.

[11] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. 2016. The synthetic data
vault. In Data Science and Advanced Analytics (DSAA), 2016 IEEE International
Conference on. IEEE, 399–410.

[12] Fabian Prasser, Johanna Eicher, Raffael Bild, Helmut Spengler, and Klaus A Kuhn.
2017. A tool for optimizing de-identified health data for use in statistical classifi-
cation. In Computer-Based Medical Systems (CBMS), 2017 IEEE 30th International
Symposium on. IEEE, 169–174.

[13] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. 2018. Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models. arXiv preprint
arXiv:1806.01246 (2018).

[14] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 3–18.

[15] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. 2019.
Demystifying Membership Inference Attacks in Machine Learning as a Service.
IEEE Transactions on Services Computing (2019).

[16] Andrew Yale, Saloni Dash, Ritik Dutta, Isabelle Guyon, Adrien Pavao, and
Kristin P. Bennett. 2019. Privacy Preserving Synthetic Health Data. In Pro-
ceedings of the 27. European Symposium on Artificial Neural Networks ESANN.
465–470.


	Abstract
	1 Introduction
	2 Membership Inference Attacks
	3 Discriminator Testing
	4 Conclusion
	References

